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ABSTRACT

The Nuclear Reactor Regulation Office of the U.S. Nuclear Regulatory Commission is charged with
assessing the safety of new instrument and control designs for nuclear power plants which may use
computer-based reactor protection systems. Lawrence Livermore National Laboratory has evaluated the
latest techniques in software reliability for measurement, estimation, error detection, and prediction that
can be used during the software life cycle as a means of risk assessment for reactor protection systems.

One aspect of this task has been a survey of the software industry to collect information to help identify
the design factors used to improve the reliability and safety of software. The intent was to discover what
practices really work in industry and what design factors are used by industry to achieve highly reliable
software. The results of the survey are documented in this report.

Three companies participated in the survey: Computer Sciences Corporation, International Business
Machines (Federal Systems Company), and TRW. Discussions were also held with NASA Software
Engineering Lab/University of Maryland/CSC, and the AIAA Software Reliability Project.
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SURVEY OF INDUSTRY METHODS FOR
PRODUCING HIGHLY RELIABLE SOFTWARE

1.  INTRODUCTION

1.1.  Purpose

The Nuclear Reactor Regulation Office of the U.S.
Nuclear Regulatory Commission (NRC/NRR) is
charged with (among other responsibilities)
assessing the safety of new instrument and
control (I&C) designs for nuclear power plants
which may use computer-based reactor
protection systems (RPS). One task carried out by
the Lawrence Livermore National Laboratory
(LLNL) in support of NRC activities has been to
evaluate the latest techniques in software
reliability for measurement, estimation, error
detection, and prediction that can be used during
the software life cycle as a means of risk
assessment for reactor protection systems.

One aspect of this task has been a survey of the
software industry to collect information to help
identify the design factors used to improve the
reliability and safety of software. The intent was
to discover what practices really work in industry
and what design factors are used by industry to
achieve highly reliable software. The results of the
survey are documented in this report.

Three companies participated in the survey:

• Computer Sciences Corporation

• International Business Machines, Federal
Systems Company

• TRW.

Discussions were also held with two other
organizations:

• NASA Software Engineering Lab/University
of Maryland/CSC

• AIAA Software Reliability Project.

The results of the survey and discussion were
reviewed by personnel from another company,

who provided comments on the applicability of
the results to other industry sectors.

1.2.  Scope

This report documents the discussions with the
companies and organizations that participated in
the survey. No judgments are made about this
information—the report is limited to organizing
and presenting the opinions expressed by each
company and organization.

1.3.  Report Organization

The report contains six sections in addition to this
introduction. Section 2 provides a summary of
what was learned during the project. It combines
the design factors considered important to the
companies into two lists. Sections 3–7 provide
summaries of the information received from each
company and organization. These summaries
have been reviewed by the companies visited for
completeness and accuracy, and to provide
assurance that no proprietary information is
included.

Wording in Sections 3–7 frequently takes the form
“Company X says ...” or “Company Y believes ...”
In each case this should be interpreted as
meaning that “the people interviewed at
Company X said ...” or “the people interviewed at
Company Y believe ...” The opinions expressed
are those of the individuals, and may or may not
constitute company policy.

1.4.  Acknowledgments

Many individuals in the companies visited helped
us understand the software development
methods used by the companies, and what design
factors the companies considered important in the
production of highly reliable software. We
particularly appreciate the efforts of the following
individuals:

For AIAA: George Stark.
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For CSC: Victoria Davison and Gail
Phipps.

For IBM: Ted Keller, Barbara Kolkhorst,
Earl Lee, and Kyle Rone.

For SEL: Victor Basili.

For TRW: Dan Crandall, Mark Gerhardt,
James Pearson, Winston Royce,
Walker Royce, Stash Vann, and
George Ziff.

The authors also acknowledge the contributions
of the U.S. NRC Technical Monitor, Mr. John M.
Gallagher, in the formulation of and active
participation in this task.

2.  INDUSTRY USE OF DESIGN
FACTORS

Each of the companies surveyed was asked for
the most important factors which, in their
opinion, are necessary to produce highly reliable
software. There was considerable agreement on
these factors—seven were identified as the most
important. An additional ten factors were
identified as important, but not as important as
the first seven. Each group of factors is described
briefly in the remainder of this section. No
ordering is implied within either of the two
groups.

2.1.  The Most Important Design Factors

2.1.1.  Company Commitment

There must be a top-to-bottom commitment to
quality work. In particular, middle management
must understand, share, and enforce this
commitment. If the company is not primarily a
software company, then the company’s top
management must understand the peculiarities of
developing high-integrity software, and must be
committed to spending the resources required to
“make it work.”

2.1.2.  Company Experience

Organizations responsible for developing trusted
software1 must have considerable experience in
successfully producing high-integrity software.
                                                                        
1 Software is considered to be trusted if the failure of the
software creates a risk to safety or security.

The methods used to develop trusted software
must become a part of the “corporate culture,”
and that requires years to develop and mature.
Experimentation with new methods, trial and
error, and learning from mistakes were all
emphasized as key components of the company
culture and experience.

2.1.3.  Configuration Management

Configuration management must be understood
and practiced, since there is no other way to keep
track of what software components are actually
being developed, tested, and deployed. Changes
to requirements must be formally approved, their
implications in the software development process
must be documented, and the implementation of
the changes must be tracked and verified.

2.1.4.  Independent Verification, Validation,
and Testing

Verification and validation (V&V) and testing
must be carried out by an organization which
does not report to or depend upon the
development organization. The V&V
organization may be an independent organization
within the same company, or may be a different
company; provided that the independence exists
and is enforced, this difference does not appear to
matter.

2.1.5.  Life Cycle

Software development must be based on a
company-accepted and understood life cycle. The
particular life cycle that is used is not important;
the existence of some life cycle is important. The
actual life cycle depends on contract stipulations
and company experience.

2.1.6.  Metrics

All work should be measured, and the
measurements must be understood and used.
This includes technical work, V&V work, and
management work. The actual measurements that
are used vary among the companies, and reflect
their different cultures and goals. All companies
emphasized the importance of measuring both
process and product, and using the results to
track development and to improve the software
development process.
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2.1.7.  Process Improvement

The development organization must actively
work to improve itself. Mistakes must be
analyzed, root causes must be determined, and
the development process must be changed to
reflect “lessons learned.” The analysis must be
done in a non-threatening way, and change must
be introduced deliberately and carefully, and
paced so as not to be disruptive. Changes to the
development process require about two years
from their introduction until they become
completely integrated into the organization’s
normal development practices. Some changes
take less than two years to be integrated into
company practice; others, more.

2.2.  Additional Important Design
Factors

2.2.1.  Cost and Schedule

Management must understand and be able to
control cost, schedule, and staffing. This must
precede the understanding and control of other
quality factors; if cost and schedule cannot be
measured and controlled, there is little hope of
controlling reliability and other forms of quality.

2.2.2.  Risk Management

Management and engineers must understand the
concept of risks, and must be able to detect,
analyze, and manage development risks.

2.2.3.  Use of Standards

Corporate standards should exist for software
development, must be understood by all
corporate personnel, must be used, and must be
enforced. Standards at the corporate level are
generally non-specific, but project standards must
be specific to the needs of the project and
consistent with one another.

2.2.4.  Root-Cause Determination

Recurring defects should initiate determination of
root causes, and cause changes in organizational
behavior to eliminate or control the root causes of
defects.

2.2.5.  Design for Testing

Requirements specifications and design
specifications need to be written so that they may
be tested.

2.2.6.  Certification

Safety-critical systems should be certified before
being deployed. In particular, the development
organization managers should be required to sign
that the software is ready for use, and should
accept personal responsibility for preventable
errors.

2.2.7.  Low Turnover

Personnel attrition rates should be less than about
5% per year, to prevent loss of corporate memory.
Unstable development teams tend to create
unreliable software products. Also, high turnover
generally indicates poor management policies or
actions. Low turnover is necessary both at the
technical and managerial levels.

2.2.8.  Reading

Errors in requirements, design, and code can
frequently be found by reading the specifications
or code. Reading for errors is a skill which must
be taught and practiced. For best results, reading
should be by various specialists: tester, developer,
subject area expert, maintainer, etc.

2.2.9.  Document Management

Documentation must be planned, produced,
analyzed, controlled, and managed according to
company standards.

2.2.10.  Importance of “-ilities”

The various “-ilities” are important, and cannot
be ignored. The following list, taken from a
variety sources, is intended to be complete. Any
particular projects will need to be selective and
set priorities: Access control, accuracy,
auditability, commonality, communicativeness,
completeness, conciseness, (internal and external)
consistency, correctness, efficiency (performance),
error tolerance, expandability, flexibility,
generality, independence, integrity,
interoperability, (internal) instrumentation,
maintainability, modularity, operability,
portability, reliability, reusability, robustness,
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security, self- descriptiveness, simplicity,
testability, traceability, training, usability.

3.  COMPUTER SCIENCES
CORPORATION

3.1.  Introduction

Computer Science Corporation (CSC) is a $2.5B
corporation, of which $1.1B is from federal
government contracts. There are 25,000
employees, including 15,000 professionals. The
corporation is divided into a number of groups,
one of which, the Systems Group, is responsible
for federal contracts.

The Systems Group is itself divided into a
number of divisions. Personnel from the Systems
Engineering Division (SED) were interviewed for
this task. Another division, the Systems Science
Division, works with the NASA Software
Engineering Laboratory.

The Systems Group has learned three important
general lessons about producing highly reliable
software:

1. It is necessary to have corporate standards for
the various software development activities.
For programming languages, there must be a
separate style standard for each language.
The corporate standards must be enforced.

2. Software must be designed and built so that it
can be tested.

3. The testing organization must be
independent of the development
organization.

The discussions with SED were primarily about
software testing.

3.2.  Practical Application of Software
Testing

CSC/SED tried several different methods for
improving the quality of delivered software. The
only method that has been found to work
consistently is to have an independent software
test group, whose sole job is testing. This group is
responsible for the quality of the software after it
leaves the testing activity. The test group must be
in place from the first day of the project—that is,

during project planning. The best and brightest
software engineers are located in this group. The
group must be independent—it does not report to
the manager responsible for software
development. Instead, the test manager and the
development manager both report to an overall
project manager. SED’s preferred organization
chart is shown in Figure 3-1.

It is critical to keep a low turnover rate—less than
2.5%. An auditor should look at turnover rate; if it
is high, the auditor can conclude that the system
under development is in trouble.

3.3.  Detailed Discussion of Testing

CSC/SED has been developing a testing method
for the past fifteen years. It uses a scheme with
multiple levels of testing. These levels are as
follows:

R Requirements Testing

0 Design and Code Walkthroughs

1 Unit Testing

2 Component Testing

3 Program and Subsystem Testing

4 System Testing

3.3.1.  Level R Testing

Level R testing, the first level of assurance,
consists of software requirements validation. SED
has only recently begun using this form of
validation The objective is to carry out various
forms of analysis to assure the developers that the
right product is being developed in the right way.
Four forms of analysis may be used, depending
on the type of problem being solved. These are
mathematical modeling, analytical modeling,
simulations, and rapid prototyping.

As shown in Figure 3-2, the level R testing
assumes the existence of a system requirements
specification and a high-level architectural
design, and relates the software requirements to
that design.
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3.3.2.  Level 0 Testing

Level 0 testing consists of peer reviews, design
walkthroughs, code walkthroughs, and
documentation walkthroughs. This procedure is
informal for most systems, but formal
walkthroughs are required for trusted systems.2
The purpose of walkthroughs is:

• To validate that the design meets system
requirements.

• To verify design logic.

• To verify interface design.

• To verify adherence to design standards and
documentation standards.

Rigorous inspections are used and documented
by means of a technical conference report. The
following types of errors are emphasized: missing
requirements, unsatisfactory requirements, logic
errors, database design errors, interface design
errors, and standard adherence errors.

Level 0 design walkthroughs occur for units
(consisting of about 100 lines of code) and
components (consisting of about 10 units).
Attendance varies according to the complexity
and criticality of the object under consideration.
The minimum is the software engineer and a
quality assurance person (tester). Additional
personnel who may need to be present are the
software development manager, a customer
representative, the software configuration
manager, maintenance personnel, and any
required invited experts.

The benefits of level 0 testing of the software
design are to:

• Find design and interface errors in the
development process.

• Reduce coding errors by a factor of ten.

• Ensure that standards are adhered to.

• Provide the tester with enough information to
prepare unit test descriptions.

• Reduce testing time and cost.
                                                                        
2 CSC uses the term “trusted system” to describe a system
with very high safety or security requirements.

• Verify that software requirements are
satisfied by the design.

• Identify and eliminate poor techniques that
may adversely affect maintenance.

• Share techniques and ideas among
programmers.

• Promote team member interaction through
the walkthrough process.

Studies by IBM and IEEE have shown that it is
10–30 times less expensive to correct design errors
during the design walkthroughs (before coding)
than after coding is completed.

Level 0 code walkthroughs include the same basic
set of skills, though emphasis shifts from process
and systems knowledge to software knowledge.
Code walkthroughs review the same items as was
done in the design walkthrough—plus the code
itself. The walkthrough is held after the software
engineer affirms that the code is completely
“debugged.” Benefits include:

• Self-esteem of the programmer becomes tied
to defect-free code. As a result, quality is
built-in.

• Up to 85% of the implementation errors
(coding defects) can be identified and
corrected before formal testing begins. Errors
found at this level are inexpensive to correct.

• The implementation of the design can be
validated.

• Unit testing becomes possible within time
and schedule constraints.

• The code-control and the testing process
begin with the results of the code
walkthrough.

If the walkthrough process can be automated
(partially or fully), the resulting data provides the
tools to perform effective maintenance.

SED believes that the entire review and testing
process is necessary in order to produce defect-
free code.
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3.3.3.  Level 1 Testing

Level 1 testing is carried out at the unit level. SED
uses the DoD-STD-2167A definition of unit: the
“smallest logical entity specified in detailed
design which completely describes a single
function in sufficient detail to allow
implementing code to be produced and tested
independently of other units.” Units average 100
executable lines of code (ELOC), and generally
should not exceed 200 ELOC.

The purpose of unit testing is as follows:

• To check for mathematical and logical
correctness.

• To validate performance against system and
subsystem requirements.

• To measure memory usage and throughput
rates.

• To exercise every program path.

Testing tools are used to generate the list of
program paths, and to generate the values of
variables that must be used to force the program
to execute the different paths. The following types
of errors are emphasized: mathematical,
requirement implementation, parameter passing,
and path errors. Test execution includes path
analysis, boundary class testing (stress testing),
and parameter testing.

Benefits of level 1 testing are as follows:

• Identify logic errors.

• Support maintenance by using the data
produced by the testing process.

• Resolve man–machine interface questions.

• Build “engineering” confidence into the code.

Level 1 testing is believed to cut system
integration costs and schedule in half. It can
remove 75% of the coding errors and 20% of the
design errors.

3.3.4.  Level 2 Testing

Level 2 testing—sometimes called “integration
testing”—is carried out at the component level. A
component is a collection of approximately ten

related units.3  Two types of component testing
are used: testing each component as a collection
of units, and testing the interfaces between
components.

The purpose of component testing is as follows:

• To check interfaces between units.

• To check interfaces between components.

• To check global variable usage.

• To check flow of control.

• To verify applicable system requirements.

• To verify parameter passing between units.

• To verify parameter passing between
components.

Requirements tracking tools are used to generate
test cases for components and component
interfaces.

The benefits of level 2 testing are as follows:

• Identify and correct interface problems.

• Identify and correct global variable problems.

It is easy to analyze system throughput and
timing problems at this stage of testing. The test
activity generates data (test procedures and test
cases) that are needed later during maintenance.
SED uses an automated requirements tracking
tool, which is used to generate test cases to test
interfaces between requirement matrix and the
code. The results of the test activity provide data
which will be used later for stress testing.

3.3.5.  Level 3 Testing

Level 3 testing consists of program and
subsystem testing. (SED uses the MIL-STD term
“configuration item.”) A program or subsystem is
defined to be a stand-alone portion of the system
which is “capable of performing specific

                                                                        
3 CSC uses the following definition of component, taken from
DOD-STD 2167A: “A functional or logically distinct part of a
computer software configuration item. Computer software
components may be top-level or lower-level.” A software
configuration item is software “which is designated by the
contracting agency for configuration management.”
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operational tasks in support of an identifiable
mission objective.”

The purpose of subsystem testing is:

• To allow the customer to “buy-off” on the
software subsystem.

• To verify the correct implementation of every
software requirement.

• To demonstrate the capabilities of the
software subsystem.

• To verify that the throughput and timing
requirements are met.

• To verify the correct interface to the system
environment.

Level 3 testing is frequently carried out with the
assistance of a simulator. The system under test
consists of both hardware and software in a semi-
operational setting. Sensor and actuator lines are
connected to a simulator instead of “real” devices.
The simulator generates sensor signals, accepts
actuator signals, and evaluates the correctness
and timeliness of the hardware/software system
being tested. See Figure 3-3.

The benefits of level 3 testing are as follows:

• Verify the execution of the software
subsystem in a simulated environment.

• Verify the execution of the software
subsystem in a stressed environment.

• Verify the correct implementation of all the
software requirements.

• Verify the interfaces to other subsystems.

The availability of test information allows the
system engineers to do fast hardware checkout.
The test products provide a demonstration
system for the customer, provide a “what-if”
capability, and can provide a potential field (user)
trainer. The test cases and test data provide
needed information for the maintenance testing
activity.

3.3.6.  Level 4 Testing

Level 4 testing is carried out on the complete
system, using a real or simulated environment.
The purpose is as follows:

• To permit customer “buy-off” on the
complete system.

System Under Test

Test
Cases Simulator

Test
Log

Interface

Figure 3-3.  Example of a Level 3 Test Design
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• To verify the correct implementation of the
system requirements.

• To demonstrate system capabilities.

• To verify the hardware/software interfaces.

• To verify that the system works in both a
normal and stressed environment.

The benefits of level 4 testing are as follows:

• Verify the operation of the system in a real
environment.

• Verify the man–machine interface.

• Verify that the system correctly implements
all system requirements.

• Verify the interfaces to hardware subsystems.

The system test cases provide a training scenario
for the user community. The result provides a
demonstration system for the customer, and
provides needed data and configuration for
future maintenance testing.

3.4.  Summary of Testing Costs

SED testing philosophy can be summarized as
follows. All levels of testing are required to obtain
a defect-free software product.

• Every requirement must be implemented,
verified, and validated.

• This testing method shortens system
integration time.

• The test cases and test data that result from
the different levels of testing provide useful
maintenance tools and procedures for the
customer.

The amount of testing discussed in Section 3.3
will be about one-third of the total software
development costs, assuming the tools are
already developed. Their experience and data
show that the benefit is to reduce system life cycle
costs by an average of 55%.

Each level of testing requires approximately one-
half the effort of the previous level. This can be

expressed as the following equations, where Ci  is
the estimated effort of testing at level i:

C1 = 1
2 C0

C2 = 1
2 C1 = 1

4 C0

C3 = 1
2 C2 = 1

8 C0

C4 = 1
2 C3 = 1

16 C0

The table in Figure 3-4 provides estimates of the
percent of different error classes found by the
different levels of testing.

Error Classes

Testing
Level

Total System
Errors

Design
Errors

Coding
Errors

MMI
Errors

Interface
Errors

Database
Errors

Performance
Errors

0 50–70% ~70% ~10% ~15% ~10% ~10% ~5%

1 70–80% ~20% ~75% ~50% ~10% ~50% ~5%

2 80–90% ~5% ~10% ~15% ~50% ~30% ~20%

3 90–95% ~4% ~2% ~15% ~20% ~5% ~50%

4 95–99% ~2% ~4% ~9% ~4% ~19%

Figure 3-4.  Percentage of Errors Found at Different Levels of Testing
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An illustration of software costs incurred using
the testing methods described here was given by
SED at the Fifth International Conference on
Testing Computer Software in June, 1988. This
project consisted of 184,000 lines of code. The
effort figures given next exclude project
management, project control, system support,
licenses, and procurement.

The development effort consisted of
approximately twelve people:

Development Team: 5–7 programmer/analysts

Test Team: 3–5 programmer/analysts

QA/CM: 3 people

Costs were reported in various ways. First, cost
by function was distributed as follows:

Development: 48%

Testing: 30%

QA/CM: 22%

Next, the development costs were reported by
development phase:

Requirements: 14%

Preliminary Design: 21%

Detailed Design: 36%

Coding: 29%

Finally, the test costs were reported by test
activity:

Requirements Analysis: 10%

Test Documentation: 10%

Review Development
Documentation: 12%

Unit Test: 26%

Integration Test: 6%

Testing Tools: 36%

To summarize, the keys to successful testing are
the following:

• Use highly qualified people.

• Focus testing on requirements.

• Integrate testing with development.

• Monitor schedule and budget. Maintain
flexibility and the ability to adapt to change.

• Automate the testing activity.

Some problem areas that SED has found are:

• Living within the original cost and schedule
estimates for testing.

• Establishing a level of testing which is
reasonable and sufficient for the applications.

• Making estimates more detailed than
available data justifies.

• Convincing both the customer and company
management that extensive testing is
beneficial.

3.5.  Configuration Management4

Product assurance includes the disciplines of
quality assurance (QA), configuration
management (CM), data management (DM), and
independent test. The purpose of product
assurance is to “support the development team
by assuring that a quality product is being
produced, controlled, and delivered.” SED
defines CM as “the means through which the
integrity and continuity of the design,
engineering and cost trade-off decisions made
between technical performance, producibility,
operability, and supportability are recorded,
communicated, and controlled by program and
functional managers.” More specifically, CM is a
discipline that applies both technical and
administrative direction and surveillance to three
areas:

• Identify and document the functional and
physical characteristics of a configuration
item.

• Control changes to those characteristics.

• Record and report change processing and
implementation status.

                                                                        
4 The information in this section is taken from a CSC
presentation to LLNL on December 6, 1989.
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Configuration management tasks can be divided
into five areas, as follows:

• Configuration identification. List all
configuration items—hardware and software.
Create numbering schemes.

• Configuration audits and reviews, which
includes walkthroughs, test audits, functional
configuration audits, physical configuration
audits, and responsibility matrices.

• Metric collection and reporting. This will
need to be tailored to the project
requirements. Examples of metrics include
estimated lines of code, number of pages in
documents, and number and type of errors.

• Configuration status accounting. Prepare and
deliver reports on the configuration effort.

• Configuration control, which includes
baselining, code and document control, and
release control.

Configuration management activities are carried
out at each phase of the software life cycle—for
SED, a standard waterfall life cycle. The following
tasks are recommended by SED for each life cycle
phase.

Requirements Phase

• Write software CM plan (SCMP).

• Set up reference libraries and control
libraries.

• Establish configuration identification scheme.

• Identify CM tools and CM forms.

• Identify metrics requirements.

• Benefits of CM in requirements phase:

– Controls are planned, staffed, and
operating.

– Project memory is established.
– Corporate memory is established.
– Metrics are collected.
– A sanity check is established.

Preliminary Design Phase

• Set up status reporting.

• Establish code libraries.

• Write software delivery documents.

• Implement SCMP.

• Collect design metrics.

• Control requirements (e.g., tracking matrix).

Detailed Design Phase

• Set up version description documents.

• Implement CM tools.

• Operate libraries.

• Benefits of CM in design phase.

– All requirements are documented.
– All requirements are under control.
– Productivity is improved because of

the team’s focus on approved
requirements.

– Requirements growth is controlled; as
a result, budget and schedule are
controlled.

Implementation and Testing Phase

• Conduct walkthroughs.

• Collect metrics and history files.

• Manage run-time libraries.

• Prepare for and conduct functional
configuration audits.

• Prepare for and conduct physical
configuration audits.

• Collect failure metrics.

• Benefits of CM in implementation and test
phases.

– Facilitates design and code
walkthroughs.

– Provides a more effective test
program.

– Tracks all discrepancies and makes
sure that corrections are made.

– Ensures tracking of all action items.
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4.  INTERNATIONAL BUSINESS
MACHINES
FEDERAL SYSTEMS COMPANY

4.1.  Introduction

The IBM Federal Systems Company (FSC) has
been working on process and quality
improvement since its beginnings in the early
1960s, and is still working on these today. The
process never ends. Actual data on the effects of
process improvement exist beginning in the mid
1970s.

The process of improvement over the past two
decades has gone through a number of phases,
each adding a new element to the overall
development process. About 1976, FSC began
working on development enhancement, followed
a few years later by adding an element to enhance
requirements analysis. In the early 1980s,
independent verification and quality
management enhancements were added. By 1984,
the focus had expanded to include the entire
development process.

FSC has found that the effect of process change
may take up to two years for results to appear in
the delivered products. This is significant, since it
implies the need for long-term management
commitment to improvement, constant
monitoring and effort, and considerable patience.
It also implies that changes cannot be introduced
too rapidly or the effect of an individual change
cannot be measured and evaluated due to the
possible effects of other changes.

FSC uses a formal improvement model,
consisting of four major steps:

1. Assess the present—where are we today?

2. Model the future—where do we want to go?

3. Plan the transition—how do we get there?

4. Integrate the change—make it so!

FSC has a goal of error-free software, defining
quality as “conformance to customer
requirements.” Other definitions of this term,
such as “conformance to customer expectations,”
exist. Information presented by FSC must be
understood in the context of the former
definition, and no other. The customer (NASA)
sets the goals for reliability, availability,

maintainability, and performance. If these goals
are met, then the product is considered to be of
high quality.

An important aspect of the FSC process is that of
detection and removal of errors in the software
documents and code. FSC divides errors into
three sets:

1. Early detection—errors detected before a new
system build occurs.

2. Process errors—errors detected between a
new system build and delivery to the
customer.

3. Product errors—errors detected after delivery
to the customer.

The effect of FSC’s process improvement over
several decades is that early detection errors now
run about four per thousand source lines of code
(4/KSLOC), process errors are about 1/KSLOC,
and product errors are nearly nonexistent.

The improvement in error rates is shown in
Figure 4-1. This chart needs to be read carefully.
There is about one product release per year, and
errors are counted against that release as long as
they can be traced back to it. This means, for
example, that a version released in 1985 has been
counting product errors for 8–9 years, while a
version released in 1993 has barely begun
counting product errors. The result is that the
product error curve may be biased somewhat.
However, shuttle systems within the past five
years have shown virtually no errors discovered
after first flight usage. The number of early
detection errors in each release and the number of
process errors in each release do not have this
bias since, by definition, these error counts do not
change after release.

4.2.  Key Measures to Improve Product
Value

It is not possible to manage software reliability
effectively until the development organization
has demonstrated its capability to consistently
carry out four actions. The organization must
consistently produce products that (a) comply
with their requirements, (b) are within budget, (c)
are on time, and (d) are at an appropriate quality
level. The developer must be able to carry out all
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Figure 4-1.  On-Board Shuttle Software Error Measurements
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of these actions concurrently for every project.
Quality improvement is a multi-step process, and
each step needs to be completed before going to
the next. Six steps for improving quality are listed
below, with some key phrases that describe them.
FSC disagrees with the oft-quoted statement
“quality is job one.” It is actually about job six,
and jobs one through five must be understood,
controlled, and managed before it becomes
possible to manage quality.

Initiation

• Define the processes and the process models.

• Stabilize the process.

• Standardize.

Measurement

• Define measures consistently.

• Relate measures to key goals.

• Relate measures to processes used.

• Measure with integrity.

• Retain the measurements in usable form—
keep a corporate history.

Modeling

• Relate the data models to the process models.

• Relate both data models and process models
to project parameters.

– Function size.
– Complexity.
– Criticality.
– Process proficiency.

• Relate the models to project schedules.

Prediction

• Calibrate models to new problems.

• Tailor the process to new problems.

• Forecast the future, based on history and
product definition.

• Establish a plan, based on the process model,
for achieving the forecasts.

Control

• Measure.

• Evaluate.

• Take action.

• Manage change.

Improvement

• Predict the impact of improvements.

• Redo the first five steps after the
improvement has been implemented.

• Isolate improvements to one element at a
time.

4.3.  Software Process Improvement

IBM/FSC has devoted a great amount of time,
thought, and work to process improvement over
the last fifteen years. Considerable data exists on
the onboard shuttle (OBS) software. By 1976,
when the data begins, FSC had a sound
foundation for process improvement in place.

Figure 4-2 gives a summary of process
improvements, showing when each was added to
the FSC process and to what it related. This is
discussed in Sections 4.3.1–4.3.4, which contain
lists of “lessons learned” relating to development
process improvement, requirements
management, independent verification, and
quality management.

4.3.1.  Development Process Lessons Learned

• Inspections were key to the improved
product quality for OBS.

– The inspection process must be
defined and enforced.

– Management must support and
enforce the focus on quality, meeting
requirements, and finding errors early.
The reward system must agree with
this philosophy.
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Figure 4-2.  Introduction of Process Improvements
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– Employees that perform the process
are very good at improving the
process.

– Data collection must be balanced
between resources required to amass
the data and the use of that data.

– Inspections are tailored in different
functional areas to address features
that are unique to the functional area.
This enhances productivity and
focuses the human resources where
they are most needed.

– Automation of configuration control
and error checking whenever feasible
also frees human resources for other
tasks.

• Configuration management

– OBS was able to institute CM very
early, using manual procedures. The
understanding that CM was
absolutely necessary was key to the
product quality.

– The CM concepts are basic to software
process control and are fundamental
to the continued success of OBS.
Quality enhancements rely, in almost
all cases, on some data from the CM
database.

• Process Considerations

– Processes in less mature organizations
must be more controlled and perhaps
less flexible than those in mature
organizations. One must first bring a
process under control before one can
manage that process.

– Significant results are achieved when
a mature process is transferred to
other projects.

– Mature processes continue to change
with new situations. Documentation,
process owners, and management
must change as necessary to continue
productivity and quality
improvement.

4.3.2.  Requirements Management Lessons
Learned

• Improving the requirements analysis (RA)
process also improves downstream processes.

• Having RA as part of design and code
inspection teams provides another
opportunity to identify requirements issues
before the code is delivered.

• Having the people doing RA also perform
final testing gives a unique perspective to see
if the software will meet the user’s needs.

• Continuous flow of process improvement
ideas has been fostered by the process team
and by focusing on documenting issues and
suggestions.

• FSC still needs a consistent methodology for
documenting requirements across projects
and organizations.

• Requirements inspections decrease
requirements errors, improving product
quality and eliminating rework.

4.3.3.  Independent Verification Lessons
Learned

• A structured V&V process leads to producing
higher-quality software. The test plan should
be developed early in the life cycle; formal
test cases must be developed, executed, and
analyzed; V&V results should be peer-
reviewed; there should be a final review by
the customer; and records should be retained
for future use.

• It is necessary to maintain independence
between process functions. That is, the
requirements analyst, the developer, and the
verifier must have organizational
independence from one another.

4.3.4.  Quality Management Lessons Learned

• The development process must be under
control before process enhancements can be
managed effectively. The following are
necessary to have control over the software
process:

– A formal configuration control process
must be implemented.
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– A configuration management database
is essential for productivity and
automation.

– Measurements and error counting
must begin as the project begins.

• An important aspect of process improvement
is defect cause analysis. The ability to learn
from errors is key to effective improvement.

• External review of the process is valuable. It
brings insight that may not be available
internally.

• There is no substitute for management
attention and focus on the quality of the
product and the needs of the customer.
Employees do what management rewards
them for.

• A mature organization can always find other
processes that have information and
techniques that can benefit and improve even
very good processes.

• Automation can facilitate process
improvement. Process enactment, that is,
automating the process in the environment
used to develop code, will continue to
improve quality and productivity. It frees the
human mind to do the tasks that are either
too complex for automation or involve
judgments that are not easily parameterized.

The following summarizes FSC lessons learned
from metrics analysis:

• Cost and quality can be related, allowing
realistic costing of desired quality levels.

• Careful interpretation of metrics can yield
extremely effective process improvement
feedback.

• Trend analysis of metrics can provide
valuable insight into areas requiring special
study and emphasis, and can aid in
management decision making.

• A defect prevention approach can be made
much more effective by using metrics
feedback to identify unrecognized software
failure modes.

• Metrics actually affect workers’ views of their
own worth, in turn psychologically
influencing work quality.

• Testing must be selectively focused as a result
of metrics analysis.

• A metrics analysis process can be only as
good as the data collected and retained in the
metrics databases.

• The most effective productivity initiative is
error prevention and early detection.

• Empirical cost and quality predictions are
feasible only if proper metrics data are
available.

• Frequency of metrics reviews across
programs must be optimized for project-
specific goals.

• Cycle-time influences can be determined and
managed when appropriate metrics are made
available for analysis.

4.4.  Software Reliability

Flight software failure modes are divided into
three severity levels. Severity 1 failures have
severe vehicle or crew performance implications;
these include loss of vehicle and death of crew
members. Severity 2 failures affect the ability to
complete mission objectives, but are not safety
issues. Severity 3 failures are the remaining
failures that are visible to the user, but have
minimal effects on the mission. Only severity 1
failures are safety-related.

NASA and FSC log every software discrepancy.
(A discrepancy is a suspected error, fault, or
failure.) The discrepancies are traced back to the
actual software, and are tied to the actual writing
of that software. Since FSC software releases
consist of multiple modules of code written at
different times over periods of years, this trace-
back is essential to finding out what went wrong,
and whether process enhancements added after
the date the error was introduced would have
prevented the introduction.

Testing alone cannot prove that software has no
errors. Half of all shuttle discrepancies are found
by static analysis, not testing. Adding more
testing can asymptotically reduce the risk of
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software error, but cannot eliminate it. Quality
must, therefore, be built into the software.

Before the software can be used on a shuttle
mission, FSC is required to certify, to the best of
its knowledge (based on application of extensive
analysis, testing, and prediction techniques) that
no severity 1 errors are present in the software.

Reliability prediction is done through modeling.
FSC has found that the Schneidewind model best
fits their data. The models predict that at most
one mission per thousand will encounter a
severity 1 failure. However, this prediction is
based on testing results where the testing is
mostly of off-normal events. A more accurate
interpretation of the model appears to be that at
most one mission per thousand that contain off-
normal events will encounter a severity 1 failure.

Quality must be built into the software by using
appropriate software engineering methods. There
is no single technique that has led to FSC’s
success; rather, success has been a result of doing
all of the techniques, and doing them well.
Techniques critical to high reliability are:

• Structured software development process.

• Rigorous configuration management.

• Failure mode identification, analysis, and
elimination.

• Oversight discrepancy analysis and feedback
for process correction.

• Automation of software production
processes.

• Independent verification and validation.

• Quality-monitoring metrics and
interpretation.

• Inserting new technology to upgrade the
development process.

• Management commitment to an “error-free”
culture.

• Employee education and rewards.

• Focus on the development process—
especially the “front end.”

• Continual measurement and analysis of the
process.

• Elimination of defect causes.

• Use of industry standards and competition to
assess quality.

4.5.  Aspects of Software Development

4.5.1.  Cost and Quality Planning

FSC has developed and refined a method for
predicting and controlling development costs and
schedule. If these are not controlled, the project
will almost certainly exceed budgets, at which
time testing is generally aborted and quality
suffers. The general approach is shown in Figure
4-3. The following list provides the elements of
FSC’s costing method:

• Decompose requirements into functional
areas.

• Relate functional areas to known functional
areas where the development organization
has experience.

• Estimate function size in terms of source lines
of code (SLOC).

• Assign complexity and criticality levels to the
different design and code elements.

• Assign functions to different product releases.

• Select the project productivity factor based on
complexity, release, use of COTS software,
and any reused software modules.

• Select a verification factor based on criticality.

• Select other indirect cost factors based on
criticality.

• Divide SLOC by the productivity factor to
arrive at the direct development labor months
required for the project.

• Multiply the development labor months by
the verification factor to arrive at the direct
verification labor months.
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• Add the development and verification labor
months together, and multiply the result by
the indirect factor to arrive at indirect labor
months.

• Add development, verification, and indirect
labor months to arrive at the total
development labor months. This excludes
maintenance and operations activities.

• Use a Rayleigh curve to estimate the project
schedule and labor loading.

The amount of effort which must be devoted
specifically to quality management can be
estimated from the criticality of the project,
measured by the required product error rate in
terms of errors per thousand source lines of code
(KSLOC). For early development phase of large
software systems, Figure 4-4 shows the
percentage of a project that must be devoted to
quality in order to achieve a specified error rate.
“Ordinary” products can be produced by
devoting approximately 10% of the development
cost to quality management, resulting in about
one error per KSLOC in the delivered code.
Reducing error rates below this requires much
larger investments in money, time and labor. To
achieve a delivered error rate of 0.1/KSLOC,
approximately 60% of the project budget must be
spent on quality management. Corresponding
curves with lower error rates can be developed
for more mature processes, methods, and system
maintenance.

There are two types of technical cost, driven by
different factors. One is functional cost, driven by
the size and complexity of the application
functions. The other is schedule cost, driven by
time. These should be separated and managed
separately to be successful at managing the
development process. Management cost is in
addition to these technical costs.

4.5.2.  Software Requirements Process

Requirements analysis is defined by FSC to be the
process of “decomposing, analyzing, and
understanding the needs of the customer and
exactly specifying them to be correct,
implementable and testable.” Requirements are a
primary driver for many aspects of software

design and development, including cost,
schedule, skills required for implementation,
resources required, the hardware/software
architecture which will be used, test plans and
schedules, and operational procedures. There are
many benefits to requirements analysis. All
parties to the development (customers, users,
developers) are more likely to share an
understanding of the requirements, and to be
satisfied with the delivered product. The
probability of errors in the requirements is
reduced, and the software system is more likely
to be completed within budget and schedule
constraints.

Errors made during requirements specification
can be very costly if not found until later in the
life cycle. Figure 4-5 provides a range of expected
relative costs, depending on when the error is
discovered. Units may be time, dollars, or another
measure of cost. FSC uses a six-step process for
requirements analysis. This is shown in Figure 4-
6, and discussed below.

Requirements conception will result in an
understanding of the operational need for the
software system. Architectural options for the
entire system (hardware, software, people) are
examined, and the preferred architecture is
determined. An outline of the intended software
system is sketched.

Requirements generation produces the actual
requirements specification as specific
requirements are determined and documented.
The requirements specification serves as (1) the
primary technical input to the design team, (2) the
primary input to the software test team, (3) a
contractual agreement between the customers
and the developers, and (4) the basis for
communication among all the parties concerned.
Developing the specification is an iterative
process, and can require a considerable amount of
work. The benefits of a systematic requirements
specification are to save resources in subsequent
development phases and achieve a final product
which satisfies the customer’s real needs.
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Life Cycle Phase in Which
Error is Detected

Relative Cost to
Correct Error

Requirements 1

Design 3–6

Coding 10

Development Testing 15–40

Acceptance Testing 30–70

Operations 40–1000

Figure 4-5.  Cost of an Assumption Error in the Requirements Phase

•	 Correct errors
•	 Resolve issues
•	 Rewrite

Iteration

•	 Define software requirements in accordance with 
operational concept and system requirements

•	 Produce requirements specification

Requirements 

Generation

•	 Assess technical and resource impact
•	 Determine acceptability, implementability, testability
•	 Examine requirements readiness

Requirements 

Analysis

•	 Discuss proposed requirement in detail
•	 Discuss operational scenarios
•	 Identify issues and errors

Requirements 

Inspection

•	 Identify need
•	 Examine architectural options
•	 Develop software system solution

Requirements 

Conception

•	 Evaluate risks and benefits
•	 Decide on resource expenditures
•	 Establish baseline

Requirements 

Approval

Figure 4-6.  Requirements Analysis Process Steps
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The following list of key words describes a good
software requirements specification:

Unambiguous Traceable

Consistent Concise

Complete Verifiable

Correct Logically closed

Understandable to
customer

Design independent

Organized Non-redundant

Modifiable Justified

Traced to its origins

Requirements analysis is a detailed technical
examination of the requirements to assess the
feasibility of implementing them. Inputs to the
analysis include cost and resource assessments,
risk assessments, and a readiness assessment—is
the requirement ready for implementation? Many
methods are available. A functional
decomposition approach gradually decomposes
high-level functions into lower-level functions by
increasing the amount of detail. Object-oriented
analysis creates a data model based on objects
defined in the application domain. An event–
response analysis indicates how the system will
respond to all foreseeable stimuli. A data-driven
analysis concentrates on the definition of data
structures and the actions that take place on the
data. In most cases, more than one type of
analysis will be required.

Requirements inspections should be carried out
from time to time during the generation and
analysis activities. The intents are to determine if
(1) changes are written against the most recent
requirements base; (2) all necessary requirements
are included; (3) the requirements meet the
intention of the customer (author); (4) the
requirements consider all related options and
scenarios; (5) the requirements are technically
clean, understandable, and maintainable; and (6)
the requirements are consistent across all areas.
Inspections can be done by a formal page-by-page
specification review, prototyping, customer walk-
throughs, requirements simulation, structured
requirements analysis, formal methods
(mathematical proofs), or combinations of these.

There are four primary sources of requirements
errors. These are (1) failing to capture all of the
requirements (particularly reliability,
maintainability, portability, efficiency, and user-
friendliness requirements); including
implementation details; working in isolation from
the customers; and over-specifying requirements.
Industry data quantifies the types of non-clerical
requirements errors:

Incorrect fact 49% of errors

Omission 31%

Inconsistency 13%

Ambiguity 5%

Misplaced requirement 2%

Requirements are rarely written correctly the first
time, so an iteration step should be included. The
process of generation–analysis–inspection–
iteration should continue until no more errors are
found. At this point, a formal approval process
should take place to evaluate the risks and
benefits of proceeding with software
development, determine what resources will be
required for development, and decide whether or
not to proceed.

4.5.3.  Error Cause Analysis and Defect
Prevention

One goal of the FSC development process is to
produce error-free software. An important aspect
of this process is to use information about
software errors to improve the development
process. The existence of an error in the delivered
product can be viewed as a failure of the
development process. Why was the error inserted
into the product? Why was it not caught during
development? How can the process be changed to
prevent the error from re-occurring?

Defect prevention actions require a disciplined,
repeatable process if they are to be effective.
Understanding how an error was inserted into the
product requires thorough documentation;
tracking of process, product and defects; and
analysis of the root cause of the error instead of
the symptom.
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FSC collects a considerable amount of
information about each defect that is discovered.
Some of this is listed here:

• Description of the defect

– What was the problem?
– When was the problem found?
– Who found it?
– Where was it found?
– How was it found?

• Analysis of the defect

• Information about the defect

– What was the potential severity of the
defect?

– What type of defect occurred?

• History of the defect

– During which activity was the defect
found?

– During which activity was the defect
introduced into the product?

– During which activity should the
defect have been found?

Over time, patterns and trends of defects can be
detected, and corrective action can be planned,
proposed, and carried out.

There is no magic to defect prevention. It requires
a continuing effort over many years. Each root
cause of inserting defects into the software
product must be found individually and
eliminated individually. Work habits must
change, and the development process must
change. It typically takes about two years for
process changes to become fully incorporated into
everyday practice, provided that the corporate
culture encourages such change and management
is both understanding and committed. However,
when viewed over a period of 10–15 years, the
cumulative effect of the improvements at FSC is
quite impressive.

4.5.4.  Obstacles to Highly Reliable Software

FSC was asked “What are the most important
obstacles to producing highly reliable software?”
Four obstacles were mentioned:

• Poor software project management.

• Project driven by schedule rather than quality
requirements.

• Failure to control the establishment and
content of the software product baseline.

• Failure to track software errors and error
causes. Failure to learn from these mistakes.

5.  TRW

5.1.  Introduction

TRW is a corporation of 15,000–20,000 people
organized into five divisions. The primary
customer is the Department of Defense (DoD), so
DoD standards and contracting requirements
govern many of TRW’s software development
methods. Each division is responsible for its own
software development; a corporate-wide activity
attempts to coordinate the effort and promote
standardized development methods.

5.1.1.  Software Engineering Process Groups

Process improvement goals are developed
through the software engineering process groups
(SEPGs) attached to each division, and through
the individual development projects. The SEPGs
tend to work on broad process issues, while the
projects tend to deal only with the particular
project domains. A corporate-wide SEPG
coordinates the activities of the divisional SEPGs
and attempts to reduce duplication of effort.

The divisional SEPGs regularly evaluate the
engineering process and identify potential areas
of improvement. They create and direct task
teams to study and implement process
improvements. They evaluate new technologies,
tools, techniques, and methodologies for possible
use on TRW projects. Some examples of process
improvement goals are:

• Standardize software engineering policies
and practices.

• Develop a consistent reuse program.

• Develop a consistent training program.

• Develop a better software engineering
environment.
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• Develop a consistent approach to software
cost and size estimation.

• Develop a consistent metrics program,
including process instrumentation and
higher-level metrics.

Progress in a project is measured through the
completion of low-level milestones. Success can
be measured through observed improvements in
productivity, perceived customer satisfaction,
latent errors, time to correct errors, and other
parameters.

TRW is committed to the Total Quality
Management approach to improving the software
development process. Currently, the SEPGs are
engaged in process improvement and technology
insertion efforts. They are striving to advance
TRW’s software maturity, and monitoring cost
implications in competitive procurement
contracting. TRW appears to be undergoing a
shift from custom development to purchase and
integration, and the SEPGs are monitoring this
transition. That is, rather than write new
software, TRW expects to buy existing
commercial off-the-shelf (COTS) packages and
integrate them into a system that addresses the
customer’s requirements. There is a great deal of
uncertainty about using COTS software in safety-
critical applications. TRW believes that such use
is probably going to occur, but it will be quite
difficult to understand the implications.

5.1.2.  Highly Reliable Software

TRW is going through a paradigm shift, which is
culturally difficult. The driving factor is cost; in
order to compete, TRW needs to cut costs. This
means that it must reduce programming—buy
COTS software and integrate the packages. TRW
considers it important to move into reuse of
existing products and software packages. If it is
not possible to buy or reuse software for a new
application, TRW’s experience suggests that
existing tools and fourth-generation languages
should be used in order to control costs.

Throughout industry, software development
efforts have usually been underestimated with
respect to difficulty. They are consistently under-
funded, generally by a factor of at least two.
Managers frequently come from hardware
backgrounds, and do not understand the
difficulty of creating software.

The most severe software errors generally occur
in the non-application code, as application code is
generally linear and straightforward. Database
management systems and communication
systems are much harder to create, and
consequently tend to have more errors and more
serious errors. Operating systems are very
difficult to write. Major errors occur in the areas
of operating system control and in interfaces
between operating systems and application
programs.

To achieve safety, one needs to at least double the
estimated cost of creating a non-safety system of
comparable size and complexity.5 TRW believes it
must concentrate on (application) system control.
This should be machine-generated (automatic
programming) through a fourth-generation
computer-aided software engineering (CASE)
system. People are very bad at writing this kind
of code; automatic programming techniques
generate many fewer errors. It was emphasized
that it is critical to certify the automatic
programming code generation techniques and
tools.

Object-oriented design (OOD) and programming
(OOP) probably should not be used in safety-
related code. The OOD/OOP paradigm does
allow one to keep costs down when making
changes during maintenance, but this should not
be the primary objective when safety is the issue.
The problem is that it is impossible to predict
how the safety-related system will really work.
For example, the OOP compiler will insert extra
code that permits the executing program to make
decisions “on the fly” (during execution) which
cannot be predicted. (These comments are aimed
more at OOP than OOD.) It might be possible to
use OOD techniques, and then implement the
design in a more predictable manner using a
standard third-generation language such as
Pascal, Fortran, C, or a limited subset of Ada. This
approach costs more, but the result is more
predictable.

People can build software that is more-or-less
independent of the hardware. TRW needs to
write software this way so that the customer can
move it with no coding changes from one
hardware platform to another; if this cannot be

                                                                        
5This means double the “real” cost, not the underfunded cost
mentioned above.
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done, it becomes impractical to keep up with
hardware generational changes. The software
industry is on the verge of achieving this.

5.1.3.  Certification of Safety-Critical Software

The Ballistic Missile Defense (BMD) Division of
TRW creates software to perform safety-critical
functions for nuclear weapons systems. This
software performs such functions as guidance,
launch control, and encryption/decryption,
whose failure could have devastating results.
Because of this, a rigorous certification process
exists. This process, and its supporting standards,
are applicable to other nuclear safety-critical
systems  such as reactor protection system
software, since the problems and possible
consequences of failure are similar in scope. Some
of the objectives of nuclear weapon surety
standards are listed below. Analogies exist
between the safety requirements for weapon
system and the safety requirements for reactor
protection systems.6

• Prevent nuclear weapons from involvement
in accidents or incidents that produce a
nuclear yield.

• Prevent deliberate prearming, arming,
launching, firing, or releasing nuclear
weapons except upon execution of emergency
war orders or when directed by competent
authority.

• Prevent inadvertent prearming, arming,
launching, firing, or releasing of nuclear
weapons in all normal and credible abnormal
environments.

• Ensure adequate security of nuclear weapons.

BMD believes that methods exist which can be
used to attain an extremely high degree of
confidence in the software.

• To assure that the software satisfies its
functional and performance requirements,
use

– structured development and formal
test methods,

– strict configuration management,
                                                                        
6 Some of the information is the next several paragraphs is
taken from a TRW briefing to the NRC on July 15, 1992.

– formal proofs of correctness.

• To assure that the software satisfies only its
requirements, use

– rigorous and independent tests,
analyses, and evaluations,

– environmental, personnel, and access
controls,

– protection of the software during
development.

• To assure that the software remains intact
and uncompromised in operation, use

– built-in tests such as checksums.

BMD believes that safety-critical systems need to
be certified. In the following list, the word
“system” includes people, procedures, software,
computer hardware, application hardware, and
all other system components. The purpose of
certification is to ensure that:

• The system performs only as intended.
Safety-critical systems cannot have any
unintended or unexpected functions. They
must behave in fully predictable ways.

• Accidents and improper or unauthorized
actions are detected when they occur, and if
they occur they are adequately precluded
from causing a disaster.

• Maintenance actions do not decertify the
system. Maintenance actions can cause
changes to the software, which may add
faults. If this is possible, the changed software
requires recertification.

• Upgrades do not preclude recertification.
Major changes to the software (such as a new
version) will nearly always require
recertification. It is important that the
upgrades are of such a nature as to make
recertification possible.

Certification is a four-step process:

1. Design certification. This occurs after the
requirements review and analysis, and
determines what will be developed.
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2. Operational certification. This occurs after
final testing and validation, and ensures that
the system is ready to operate.

3. Decertification. This occurs when a change
request has been received, or a fault has been
detected. The system is considered non-
operational after decertification.

4. Recertification. This occurs after a system or
software upgrade, and after retesting and
revalidation. Once the system has been
recertified, it must also be operationally
recertified before being placed back into use
(step 2).

If one starts using COTS software, then it will
have to be certified also. This is probably much
harder than certifying the application.

5.2.  The AWIS Project

The Army WWMCCS Information System
(AWIS) is an upgrade to the Army’s portion of
the DoD World Wide Military Command and
Control System (WWMCCS). AWIS is a large
distributed information processing system
written in Ada, which has been under
development by TRW for several years. The
projected size is three million lines of Ada code.
An independent systems assurance organization
is used to evaluate processes and products to
ensure that the AWIS development effort meets
its requirements, complies with project plans, and
adheres to relevant DoD and industry standards.
An important aspect of this assurance effort is the
definition, collection, analysis, and reporting of
various metrics.

TRW uses an iterative discovery process in the
metrics program. The purpose is to force
communications among system developers, break
down intra-corporate barriers, cause key issues to
surface so they can be noticed and dealt with, and
generally to improve understanding of the
development process and products. A focus is on
process and product quality improvements. Goals
are to create a “constancy of purpose,” reduce
cost and development cycle time, and reduce the
scope and cost of inspections and testing. The
metrics program attempts to achieve all this by
measuring, managing, and maintaining
continuous improvement.

A configuration management (CM) system is
used to monitor faults and enhancements.
Reports from this system provide status, change
metrics, and fault statistics from several
perspectives, such as by development phase and
by product.

The statistical modeling and estimation of
reliability functions (SMERF) product7 is used to
track reliability data during formal testing. It is
used to collect data on requirements, change
requests, error fixing, and so forth. SMERF can
produce a great variety of reports. In particular, it
is used to make monthly and quarterly reports to
DoD.

The following classes of metrics are captured and
reported:

• Requirements and requirements volatility—
number of requirements and number of
changed requirements.

• Software development productivity—source
lines of code.

• Software reuse—lines of code that are reused.

• Software complexity—McCabe cyclomatic
complexity.

• Software quality—AdaMAT metrics.

• Software failures—fault-induced software
change requests.

• Software reliability estimation and
prediction—SMERF is used to predict
reliability.

• Development environment resource
utilization—on-line storage, CPU time, and
input/output.

5.3.  The UNAS Project

TRW has used several software development
models during the past 30–40 years: the waterfall
model, the spiral model, and a newly developed
evolutionary model. The latter works by first
“pinning down” the software framework, and
then developing the application. Framework
                                                                        
7 William H. Farr, Oliver D. Smith, and Carol L.
Schimmelpfenneg, “A PC Tool for Software Reliability
Measurement,” Proc. Institute of Env. Sci. (1988), 271–275.
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topics include: operating system, DBMS,
communication systems, man–machine interface
systems, and similar support software. This
framework is developed early in the life cycle and
then goes into a maintenance mode. Once the
framework is finished, the software for the
application is developed on top of it.

The Universal Network Architecture Services
(UNAS) product is the outcome of nearly ten
years of research and development. UNAS uses
TRW’s Evolutionary Development Paradigm
(EDP), which is based on a modified version of
the spiral model developed by Barry Boehm. This
development paradigm is targeted toward the
development of reliable distributed systems. The
fundamental thrusts of the new paradigm are:

• Early identification of the critical system
components,

• Rapid development of the first operational
prototype (during the first cycle),

• Extensive use of architectural middleware
(reusable, black-box software objects).

TRW has been developing the EDP approach over
the last ten years and is currently in the fourth-
generation product. In generation one, TRW
focused on proof of concept and function.
Generation two addressed performance. The third
generation expanded the architectural diversity to
open systems, and the current fourth generation
is the UNAS product.

The general model for EDP is shown in Figure 5-
1. Many of the activities that must take place
during software development are fitted to this
model. For example, required assets and
attributes are shown in Figure 5-2.

TRW believes that most of the complexity of a
computer system (and hence most of the faults)
resides in the support software (communications,
scheduling, database access, control, and the like),
not in the software that directly implements the
application functions. Most of this support
software is relatively independent of the
application, so it can be developed and tested
early in the project life cycle, and reused among
different projects. This is the approach used in
UNAS.

Development 
Environment

Logical 
Architecture

Runtime 
Environment

Physical 
Architecture

Design

Implementation

Evaluation

Improvement

Figure 5-1.  The Evolutionary Development Environment and Product
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Logical
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Runtime
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Architecture
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Middleware
Runtime
Libraries

Middleware
Development

Libraries

• Logical architecture
    - Structure and partition
    - Data and control flow
    - Operational dynamics
• Applications
    - Mission specific
• Static quality metrics
• Platform and network independent

• Physical architecture
    - Allocation to hardware
    - Network topology
• Dynamic quality metrics

AAAAAAAAAAAAAAAAAAACompilation, linking
and node assignment

Execution, debug, adaption
and refinement results

Standard Development Environment

• Target runtime tools
    - Debuggers
• Off-line analysis
    - Data reduction
• Execution services
    - Operating systems
    - Runtime libraries
    - Networking

Standard Runtime Environment

• Host Development Tools
    - Compilers
    - CASE
    - Documentation
• Product Components
    - Reusable, adapted, custom
• Host runtime environment
    - Debuggers, Runtime Libraries
    - Operating system/networking

Figure 5-2.  Required Assets and Attributes

The structure of a software system can be divided
into three layers. The most critical is the
architecture, which should be designed by a small
group of expert design engineers. The middle
layer is devoted to “building blocks” which
contain the difficult support software; this should
be designed and coded by a somewhat larger
group of expert programmers. The actual
application is the top layer; it is sufficiently
straightforward to permit implementation by
ordinary programmers. Figure 5-3 illustrates this
concept. This is an example of a hypothetical
system, showing the increasing numbers of
people, software objects, and interconnections as
one moves “up” the layers.

The focus of UNAS is on the “hard, critical”
building blocks contained in the center layer,
referred to as “middleware.” The TRW concept
centers on the notion of the reusable software

“integrated circuit” (software IC or software
component) and the software “circuit board.”
Each of these conceptual ideas encapsulates the
critical functions and thoroughly tests these
objects. Typically, the software IC is about ten to
fifty source lines of Ada code. The software circuit
board is composed of previously tested software
ICs and is on the order of 500 to 1000 source lines
of Ada code. This concept is similar to the object-
oriented concepts of collaborating objects (circuit
board) and classes or instances (software IC).

The EDP life cycle approach concentrates on
designing and developing the lower-level, more
difficult objects early. They are then tested
thoroughly, and placed in a maintenance phase
for the rest of the development life cycle. This
provides the programmers building the
application components considerable assurance
of the correctness of each component.
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People Objects Interconnections

80 Application Components 150 1500

10 Building Blocks

5 Arch 10 4

Figure 5-3.  Software System Layers

TRW implemented a metrics program for the
Evolutionary Development Paradigm. They
found that each cycle through the modified spiral
model increases the trust in software. Moreover,
since the critical components evolve during the
first cycle of the project, all additional software is
built on top of and exercises these critical
components, thereby “continually stressing and
testing” them. The first two cycles of the EDP life
cycle focus on the system reliability, safety, and
critical performance issues.

TRW believes that using the EDP approach and
the UNAS in actual projects results in a scrap and
rework metric of approximately 25%, compared
to the industry norm of approximately 40%. This
very significant reduction can be credited to EDP
and its “tools.”

An example is the CCPDS-R application. This
program consisted of three subsystems. Large
productivity gains were experienced from the
first subsystem to the second. The first subsystem
contained ~300K SLOC and was completed in 38
labor months. The second subsystem contained
~450K SLOC and was completed in 20 labor
months. This increased productivity is credited to
40% reuse. The final system, containing about one
million lines of Ada code, was delivered within
time and budget targets.

Productivity gains imply increased “quality”
since quality is infused into the product by
getting the system into the hands of the users as
soon as possible. Additional points are:

• The sooner unknowns can be eliminated or
discovered, the more the software quality can
be improved.

• Each cycle of the spiral improves quality.

• No first-generation system exhibits excellent
quality.

• Reuse folds in lessons learned and helps the
spiral process converge to produce a useful
product quickly.

• Quality systems are typically built by a small
number of people.

• Communication breakdown increases as the
size of the project increases.

The following are key factors in TRW’s EDP:

• Critical components are built in the first cycle.

• The application builds on these components
in all subsequent cycles.

• Program components typically fail at their
interfaces, so EDP has moved integration into
the design phase.

• EDP makes very early, immature models of
the product and evolves them to the final
product.

• The product and initial model intentionally
differ in level of maturity.

• Reuse of proven middleware is critical, since
80% of software problems come from
building onto operating system services
(software ICs and software circuit boards).

Multiple metrics are used in UNAS application
development for monthly program management
reviews. These provide different perspectives on
development progress by using a variety of
indicators. The metrics are:

Staffing profile Staff attrition and
addition
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Software complexity Software size

Software progress Cost and schedule
variances

Software architecture
stability

Program volatility

Software Problem
Report volume

Scrap and rework

Action item closure
progress

Software Problem
Report closure
progress

Host target resource
utilization

Documentation
progress

Test progress Requirements
verification progress

UNAS is discussed at length in an article by
Royce and Royce.8 It is interesting to note that
TRW now provides warranties with code
developed under UNAS. This is not because the
software is error-free, but because UNAS makes
the software cheap to fix.

The benefits of UNAS to TRW are summarized in
a TRW table reproduced in Figure 5-4.

5.4.  Discussion

Discussions with TRW personnel revolved
around two key questions. First, what are the
most important obstacles to producing highly
reliable software for use in safety-related
applications? Second, why is TRW successful at
producing highly reliable software? In each case,
certain hypotheses were posed to TRW for
consideration. These hypotheses, and TRWs
response, are discussed below.

5.4.1.  Obstacles to Producing Highly Reliable
Software

The following list contains eight obstacles to
producing highly reliable software, based on
information received from TRW. The contents of
this list show two patterns. First, both
psychological and technical concepts are
involved, and some items have aspects of both.
Second, some items appear fundamental and
others less so. The fundamental questions are

                                                                        
8 Walker E. Royce and Winston W. Royce, “Software
Architecture: Integrating Process and Technology,” Quest
(Summer 1991), 3–16.

probably more important, and harder to solve.
The list gives the proposed obstacle followed by
TRW’s response.

• Obstacle: Inaccurate interpersonal
communication.

Response: Dead right. UNAS is an attempt to
solve this by specific provisions to resolve
communication problems in meetings and in
high-level documentation. It was noted that
this statement is somewhat controversial
within TRW. The need for tools to enforce
compliance with standards was emphasized.
Tools are impersonal, and help eliminate the
human ability to ignore orders.

• Obstacle: Lack of mathematically based
“irrefutable first principles” for software
design.

Response: This principle affects the whole
approach to software engineering, to writing
reports, to creating designs, and so forth.
What is the answer? One possibility is
experimenting—which is an argument for
prototyping.

• Obstacle: The discrete (non-continuous)
nature of logic, upon which software is based.

Response: Yes.

• Obstacle: Inability to precisely translate
informal requirements (user desires) into
formal specifications.

Response: The conceptual design review (CDR) is
used for mid-course corrections. It is possible
to use tools, such as screen generators, to
obtain customer and developer agreement on
requirements. The problem can be solved, but
that solution requires planning and careful
work by both the developer and the
customer.

• Obstacle: The size and complexity of the
applications.

Response: This is true, but there were no
suggestions on how to solve the problem.
This may be one of the most difficult
problems for safety-critical software.
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Quality Impact Conventional UNAS

Requirements
misunderstanding

Discovered late Resolved early

Development risk Unknown until late in process Resolved early

Reusable software Not supported A natural attribute

Change management Chaotic and malignant Straightforward and benign

Design errors Discovered late Resolved early

Warranted performance Unheard of Practical and feasible

Cost estimation Unpredictable Predictable

Schedules Incompressible and protracted Tunable to quality, performance,
function and technology

Target resource estimation Qualitative, simulation,
analysis

Quantitative, executing prototypes

Figure 5-4.  Quality Improvements with UNAS

• Obstacle: The need for ultra-precise thinking.

Response: Yes.

• Obstacle: Requirements instability.

Response: This is a big problem. It is especially
important in safety-critical systems—it is
really necessary to have a frozen set of
requirements in such cases.

5.4.2.  Success in Highly Reliable Software
Production

The next list contains seven suggested design
factors which partially explain why TRW has
been successful at producing software with very
high reliability. The list gives the suggested factor
followed by TRW’s response. TRW gave three
additional factors, which are provided in the
paragraph following the list.

• Factor: TRW has been creating highly reliable
systems for 30–40 years, and has a great deal
of experience in doing so.

Response: Yes. TRW has had some failures. There
is a big variation in the safety-importance of
current projects. Different groups within
TRW are at different levels of the SEI
maturity model. The following table shows
the approximate percentage of projects at
different levels. TRW has a corporate goal to

move all projects to level three; they expect to
have about 75% of their projects at level three
within the next few years.

Level Percentage of Projects

1 50%

2 10–15%

3 20–30%

4 2%

5 0%

• Factor: TRW has some highly qualified
people, who have been thinking about
software development for many years. An
example is the ten-year development effort
seen in UNAS.

Response: True. TRW employees have invented
new process models three times. An example
is Barry Boehm’s highly successful spiral
model of the software development process.

• Factor: There is a management commitment
to quality. An example of this is the Software
Engineering Process Groups.

Response: Yes.
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• Factor: TRW is prepared to experiment with
new methods (such as the EDP modification
to the spiral life cycle), to improve methods
that work and to abandon methods that do
not.

Response: Yes, sometimes in an organized way;
sometimes, not. In either case, individuals
matter—people taking lessons learned from
one project and applying them to the next
project. It does not work by managers giving
orders, but management support is
important. Professional people do this
instinctively.

• Factor: TRW understands the importance of
folding “lessons learned” into new projects.

Response: True, as mentioned in the previous
answer. LLNL asked if TRW is a good
example of the NASA/SEL Experience
Factory; the answer was “yes,” but there is no
direct comparison to SEL.

• Factor: TRW believes it has identified some
major impediments to creating reliable
software, and has taken steps (in UNAS) to
control the impact of such impediments. The
most important of these is communication
within a large development team.

Response: Yes. The importance of UNAS was
summarized as (1) getting rid of race
conditions and deadlocks by guaranteeing
that they cannot occur, (2) automatic coding
aspects, and (3) communication.

• Factor: A layer of software has been identified
which is both difficult to develop, and has a
high potential for reuse. By a deliberate
concentration of this layer, those portions of
software which have a high potential to fail
can be identified, developed carefully, and
tested thoroughly. This results in highly
reliable modules, and (as a consequence)
highly reliable application systems.

Response: Yes.

The following points were added during the
discussion. TRW is successful because (1) it is a
software company, (2) it attracts good software
people, and (3) software is the primary business.
This latter point contrasts TRW with, for example,

an aircraft company, where software
development is a secondary business.

6.  AIAA SOFTWARE
RELIABILITY WORKING
GROUP

6.1.  Background

The American Institute of Aeronautics and
Astronautics (AIAA) Space Based Observation
Systems Committee on Standards (SBOS COS)
created a working group on software reliability in
August 1989. This working group was created “to
study issues in the area of software reliability
measurement.”

The working group charter is “to standardize
methods for the assessment of risk and prediction
of software failure rates.” Four major projects
were defined:

• A national repository for software reliability
data,

• A software reliability measurement tool
survey,

• A software reliability recommended practice,

• A set of software reliability “best current
practice” documents.

The first three projects are described briefly here.

6.2.  AIAA Software Reliability
Database

The Software Reliability Database is intended to
contain reliability data on “numerous completed
software development programs.”9 The intent is
to create a national repository of reliability data
for actual software systems. The data will be
organized by project, and will contain some of the
following information:

Project data.

Name of each life cycle phase.

Start and end date for each life cycle
phase.

                                                                        
9 David M. Siefert and George E. Stark, “Software Reliability
Handbook: Achieving Reliable Software,” Third Int’l Symp.
on Soft. Rel. Eng. (Oct. 7–10, 1992), 126–130.
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Effort expended, in staff months, for each
life cycle phase.

Average development team experience.

Tools and methods used for requirements,
design, code, test, and CM.

Number of organizations involved in the
project.

Constructive cost model (COCOMO)
development environment.

Software Engineering Institute index of
the development environment.

Tool and model used for software
reliability estimation.

Component data for each component.

Software size in LOC, number of
comments, number of object instructions.

Source language.

Name and model of development and
target hardware.

Average and peak computer resource
utilization.

Dynamic failure data for each failure.

Life cycle phase during which the problem
was detected.

Date and time of failure.

Number of CPU hours since the last
failure.

Number of test runs or test cases executed
since the last failure.

Clock time since the last failure.

Test hours per test interval, and number of
failures detected in the interval.

Test labor hours since the last failure.

Severity of the failure.

Type of failure.

Method of failure detection.

Unit complexity of failed unit.

Fault correction data for each corrected fault.

Date and time the fix was available.

CPU hours required for the fix.

Number of runs required to make the fix.

Clock time used to make the correction.

Labor hours required to make the
correction.

The database currently includes some data sets
from Lockheed, IBM Federal Systems Company,
NASA Johnson Space Center, and Bendix
Corporation. The majority of the data is from
DoD, FAA, and NASA projects. The data that was
submitted to the Working Group is presently in
“raw form;” there has been little, if any, analysis
of it. The Working Group considers that
disassociating the data received from the source
of the data is of paramount importance. The
database schemata to store and retrieve this data
is still being designed. The current design goals
include using a commercial-off-the-shelf database
management system running on a PC platform.

6.3.  Software Reliability Tools Survey

A survey of software reliability measurement
tools was undertaken and documented.10 Four
tools were investigated in some detail: SMERFS,
SRMP, GOEL and MUSA. The Statistical
Modeling and Estimation of Reliability Functions
for Software (SMERFS) was judged the most
comprehensive, readily available, and machine-
independent. PC-based software tools tend to be
upgraded quite frequently, so this judgment has
limited utility.

6.4.  Software Reliability Models

Fifteen software reliability models were
investigated, classified, and evaluated. Selection
criteria were as follows:

• Model validity.

• Ease of parameter measurement and
interpretation.

• Quality assumptions.

• Applicability to different development
methodologies.

• Simplicity.

• Sensitivity to “noise” and input data
parameters.

                                                                        
10 George E. Stark, “A Survey of Software Reliability
Measurement Tools,” Int’l Symp. Soft. Rel. Eng. (1991), 90–97.
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Two major categories were used to classify the
models, one of which has three subcategories.
These categories, with the recommended models
for each, are as follows:

• Error count models. These models use test
intervals and the number of failures in the
test intervals as input data. The
Schneidewind model is preferred.

• Time domain models. These models use time
between failures as input data. There are
three subcategories:

– Exponential time domain models. The
Jelinski-Moranda model is
recommended.

– Non-exponential time domain models.
The Musa-Okumoto Logarithmic
Poisson model is recommended.

– Baysian time domain models. The
Littlewood-Verrall model is
recommended.

6.5.  AIAA Software Reliability
Recommended Practices

The main accomplishment of the AIAA SBOS
COS has been to write and publish a
recommended practice for software reliability.11

The purpose of this handbook is to recommend
quantitative tools and procedures for estimating
the reliability of a software system. The
recommended practice can be used from “the
start of the integration test phase through the
operational use phase of the software life cycle.”

Six topics are discussed in the recommended
practice:

1. Common terminology.

2. Software reliability estimation procedures.
This section describes an eleven-step generic
procedure which can be followed (and
tailored) to perform an analysis. The steps
are:

a. Identify the application.
b. Specify the requirement.
c. Allocate the requirement.

                                                                        
11 Recommended Practice for Software Reliability,
ANSI/AIAA R-013-1992.

d. Define “failure.”
e. Characterize the operational

environment.
f. Select tests.
g. Select models.
h. Collect data.
i. Determine parameters.
j. Validate the model.
k. Perform the analysis.

3. Model selection. This section describes each
model’s assumptions, objectives, data
requirements, reliability mathematics,
implementation status, and reference
applications. Criteria are provided for
selecting a model. The models mentioned in
Section 7.4 are discussed in some detail.

4. Data collection. Data must be collected
during late life cycle phases (integration,
testing, operations) for use in analyzing the
product and fine-tuning the model that is
used.

5. Open research questions.

6. Predicting system failure rates.

7.  UNIVERSITY OF MARYLAND
AND NASA SOFTWARE
ENGINEERING LABORATORY

This section documents a conversation held with
Victor Basili, University of Maryland. Highlights
of the conversation, as they relate to the subject of
this report, are given below.

7.1.  Document Reading

Human analysis of documents (including
computer codes) is an area with a high potential
payoff. The software engineering community
does not yet know how to effectively and
efficiently read and analyze documents, and it
needs to learn to do this. Software engineers do
generally understand how to organize the
reading process, through design reviews, but
understanding the organization of reviews is not
the same as understanding the subject matter of
such reviews.

The clean room technique was a start at this, but
it did not go deep enough. A reading technology
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needs to be invented. How should a requirements
specification be read? A design specification? A
body of code?

The NASA Software Engineering Laboratory
(SEL) has run some small experiments on
reading. Some elementary tools based on
checklists were constructed. The checklists were
based on different classes of errors: ambiguities,
inconsistencies, omissions, incorrect facts,
material in the wrong place in the document. The
method requires several readers, each of whom
looks for errors of a particular type. At present
this is a manual approach, but machine assistance
may be added at a later time.

The result of the first experiments with this
method was very positive. Having individuals
look for particular types of errors was clearly
superior to having everyone use the same
checklist and look for all types of errors. That is,
by focusing one’s effort on a particular type of
error, one increases the number of errors found of
that particular type.

Another approach might be phase-based reading.
This has been considered, but no experiments
have been run. In this approach, the set of readers
will include people of different backgrounds,

looking for errors in the document that affect
their individual interests. A tester, for example,
will read a specification with the goal of being
able to create a test of the specification. An
application expert will check that the specification
accurately reflects the application—for example,
that no physical laws are violated. Maintenance
personnel will examine the specification to see if
the resulting product will be easy to maintain. A
safety expert will look for risks. This approach to
reading can be termed “reading selfishly.”

7.2.  Life Cycle Comments

Each phase of a life cycle can be thought of as
containing two parts: a construction part and an
analysis part. If software engineers can learn how
to do the analysis effectively, they should be able
to obtain valuable insight into how to do the
construction properly.

Analysis can be error-based or phase-based.
Figure 7-1 shows the analysis activity that occurs
after the requirements specification has been
constructed; a similar activity would occur after
all other life cycle phases. The diagram shows two
types of analysis taking place on the specification.
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Figure 7-1.  Life Cycle Phase and Construction Analysis Activities
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These analyses may be of any type; in the
example, it is assumed that models will be
developed. The first type of analysis looks for
errors, using the ideas discussed in Section 7.1.
The other form of analysis is based on the specific
life cycle phase under consideration. For example,
an initial test plan can be written, and an initial
attempt at a software design can be produced. If
these can be done in a reasonable manner,
confidence in the requirements specification is
increased.

An audit team will examine the specification and
the various analyses to be sure they are done
correctly. One set of products of the audit will be
risk analyses. Three are suggested here: financial,
schedule, and technology. These risk analyses
will be kept and used as input to the audit of the
next phase; that audit will pay special attention to
how the risks were handled by the construction
team. In this example, suppose that the audit of
the requirements specification determines that
there is a significant risk that the schedule cannot
be met. This will be documented. After the design
specification has been completed and analyzed,
the design audit team will want to know what
was done to address this schedule risk. An
additional risk analysis will be done on the
design; perhaps the design is complex, requiring
new workstation technology. This will be
documented, and used as input to the next phase
audit, and so on.

7.3.  Miscellaneous Comments

It is possible to measure a process. For example, a
tester can be asked, “Do you understand the

document well enough to write test cases?” The
answer will be “yes” or “no,” and this is a
measure. Another possibility is to ask for a value
in a range—say, 1–5. The meanings of the
numbers must be defined carefully and used
precisely. This approach is taken quite often in
social science surveys, and is apparently effective
there. Measuring is important from a
psychological standpoint, since it tells the
developer that his opinion is important.

The members of an audit team should be selected
carefully according to their areas of expertise. The
audit team might, for example, include a software
engineer, a tester, a domain expert, a quality
assurance person, a configuration manager, and a
safety engineer, permitting the various audit team
members to look primarily for problems in their
own areas of expertise. With a properly selected
team, all areas of importance should be able to be
covered.

The optimal size for modules, when measured
against defect rate, is application-dependent, but
is probably about 300–400 lines of code. Figure 7-
2 illustrates this concept.

Three things are necessary to achieve safety:

• A well-articulated set of goals.

• A well-thought-out set of processes that are
likely to achieve the goals.

• An assessment system (measurement) that
can provide assurance that the process has
achieved the goals.
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Figure 7-2.  Estimated Optimal Size for Modules


